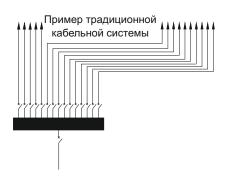
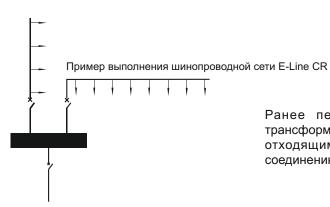
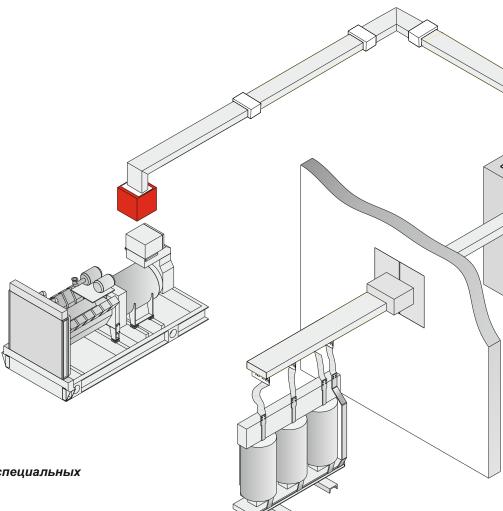


СОДЕРЖАНИЕ


►► E-LINE CR

Введение	2
Проектирование горизонтального распределения	
Проектирование вертикального распределения	5
Технические характеристики	
Система кодов заказов	10
Секции стандартные прямые	11
Поворотные секции	12
Секции стандартные специальные	16
Секции концевые и компенсационные	17
Секции концевые и компенсационные	18
Секции панельные	19
Секции присоединительные к трансформаторам	22
Секции присоединительные к панелям	23
Секции присоединительные к трансформаторам	25
Секции присоединительные к трансформаторам	29
Применение шинопровода E-Line CR на вертикальных и	
горизонтальных участках	30
Элементы крепления шинопроводов	31
Секции нестандартного размера	35
Горизонтальное применение шинопровода, заливаемой смолой	36
Вертикальное применение шинопровода E-Line CR	37
Подготовка материала для заливки соединений	38
Сертификат соответствия ЕС	40
Сертификаты	41
Обзор продукции	42

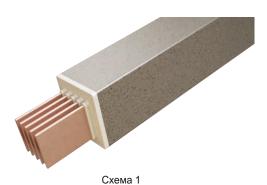




Ранее передача электроэнергии большой мощности (между трансформаторами и распределительными щитами, распределение по отходящим линиям) осуществлялась благодаря параллельному соединению множества кабелей с очень большим суммарным сечением.

Преимущества системы, залитой эпоксидной смолой

- 1 Одобрено в соответствии со стандартом ЕС 61439-6
- Степень защиты ІР68
- Защита от коррозии
- Защита от воздействия химикатов
- Защита от насекомых и грызунов
- Подходит для тропического климата
- Высокая механическая прочность
- Защита от воздействия дыма
- Высокая степень защиты от коротких замыканий
- Защита от распространения огня
- Непрерывность электрической цепи при пожаре.
- Легко адаптируется с шинопроводом E-Line KX


* Возможно быстрое изготовление специальных компонентов.

▶ Технические характеристики

Высокая степень защиты по классификации ІР

Корпус шинопровода E-Line CR изготавливается с применением DURACOMP, композитного материала из эпоксидной смолы и чистого силикона, что дает защиту от внешних элементов, перечисленных выше (страница 2).

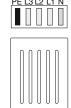
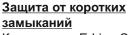
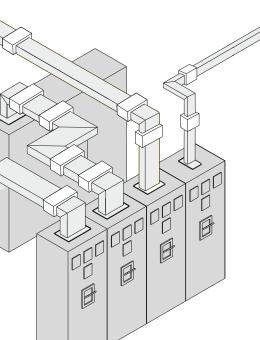



Схема 2

Эффективная теплоотдача

Корпус из литой эпоксидной смолы обеспечивает очень эффективную теплоотдачу в окружающую среду. (схема 2).



Конструкция E-Line CR имеет высокую механическую прочность, очень высокую степень защиты от коротких замыканий и высокую термостойкость.

<u>Соединение одним</u> болтом

Шинопровод E-Line CR соединяется путем затяжки одноболтового зажима. Тарельчатые пружинные шайбы с обоих концов болта поддерживают постоянное контактное давление в любых условиях, например при термическом сжатии болта, тем самым обеспечивая безопасное, надежное и не требующее технического обслуживания соединение.

*Болт затягивается с усилием_83 Нм (60 lbft)

Защита от пожаров и землетрясений

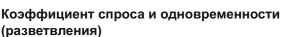
- ▶ 3 часа непрерывности электрической цепи при пожаре в соответствии с IEC 60331-1
- ► Сейсмическая защита в соответствии с IEC 60068-3-3 / 60068-2-57 и IEEE 693.

ЕХ - Защищенный

► ATEX согласно EN 60079-0:2009, EN 60079-18:2009, EN60079-31:2009

II 2G Ex mb IIC Gb

При стандартном монтаже шинопровода заливаемого смолой, проводники находятся с краю, это дает возможность легко нанести смолу на соединение.


▶▶ Проектирование горизонтального распределения

При проектировании электрораспределительных систем E-Line CR следует учитывать основные критерии.

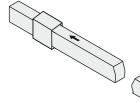
- Мощность нагрузки, подключаемой к системе, и ее расположение.
- Коэффициент спроса и одновременности (разветвления).
- Мощность и токи короткого замыкания трансформаторов.
- Координация с другими инженерными системами (теплосети, пар, водопровод и.т.п.)
- Определение маршрута E-Line CR в структуре разрабатываемой системы.
- Определение способов крепежа в соответствии с архитектурой
- При необходимости система может быть интегрирована с шинопроводами E-Line KX.

Образец чертежа проекта (для горизонтального применения)

Коэффициент спроса (а) зависит от типа и количества нагрузок. В большинстве случаев он составляет 0,7 или меньше. Для интенсивного освещения и линий питания двигателей его значение не превышает 0,6. На сварочных линиях автомобильных заводов может понижаться до 0,3. При одной большой нагрузке он может достигать "1.

Потери напряжения

Все необходимые значения для расчетов потери напряжения, формулы и основные расчеты приведены в таблицах на стр. 6–9. Дальнейшую поддержку можно получить в нашем конструкторском отделе.


Значения для коротких замыканий

Тестовые значения для коротких замыканий приведены в таблицах на страницах 7 и 8. Эти значения подчеркивают высокую степень защиты E-Line CR от коротких замыканий.

План монтажа шинопровода

Ниже приведен образец проекта шинопроводов E-Line CR. Для осуществления проектирования и определения стоимости, просим связаться с производителем.

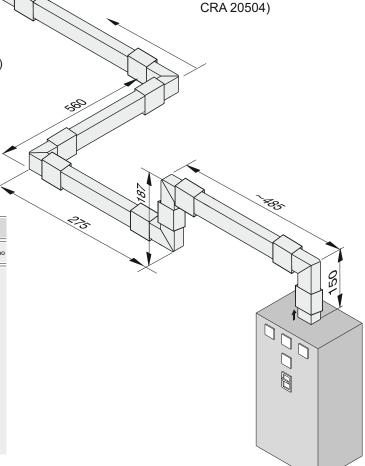
54 м (18 шт. х 3 м)

Номинальная сила тока

Номинальное значение необходимой силы тока шинопровода рассчитывается с помощью формулы, приведенной ниже.

$$I_{B} = \frac{P.\alpha}{\sqrt{3}.U.\cos\phi}$$

I_в = рабочая сила тока (A)


Р = общая мощность нагрузки

 α = коэффициент спроса и одновременности (разветвления)

U = напряжение питания (B)

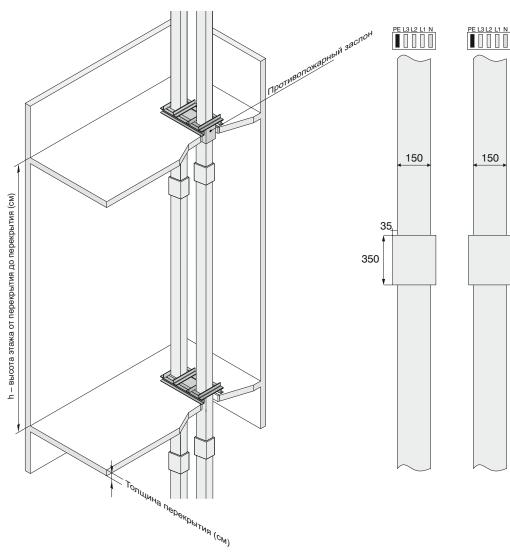
- Номинальная сила тока шинопровода выбирается равной или большей расчетной силы тока (IB).
- В зависимости от выбранного типа E-Line CR производится расчет потерь напряжения. Если значение не подходит, то следует выбрать номинал сечением выше.

Перечень компонентов Элемент Компоненты CRA 20504 - STD Шинопроводы стандартного размера (20X3 м) 60 м. 2 CRA 20504 - D Секция поворота вниз 2 шт. 3 CRA 20504 - R Секция поворота вправо 1 шт. CRA 20504 - U Секция поворота вверх 1 шт. Секция поворота влево 5 CRA 20504 - I 1 IIIT CRA 20504 - P10 Секция панельная выводная 6 1 шт. CRA 20504 - S 1 шт. Секция концевая 8 CRA 20504 - X95 Секция нестандартного размера 1 шт. 9 CRA 20504 - X120 Секция нестандартного размера 10 CRA 20504 - X122 Секция нестандартного размера 1 шт. 11 CRA 20504 - X200 Секция нестандартного размера 1 шт. 12 CRA 20504 - X174 Секция нестандартного размера 1 шт. 13 CRP 1650 Ответвительная коробка 8 шт. 14 CRB 2550 Ответвительная коробка 6 шт.

▶ Проектирование вертикального распределения

10 этах

8 этаж

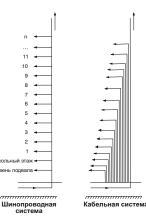

7 этаж

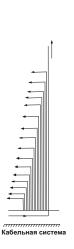
<u>6 этаж</u>

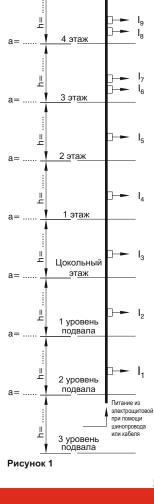
Конец линии

Для вертикального применения шинопроводов E-Line CR, необходима разработка специального проекта в зависимости от архитектурных особенностей зданий.

На рисунке, приведенном ниже, в общих чертах показана вертикальная система распределения и предоставлены необходимые данные для проектирования.

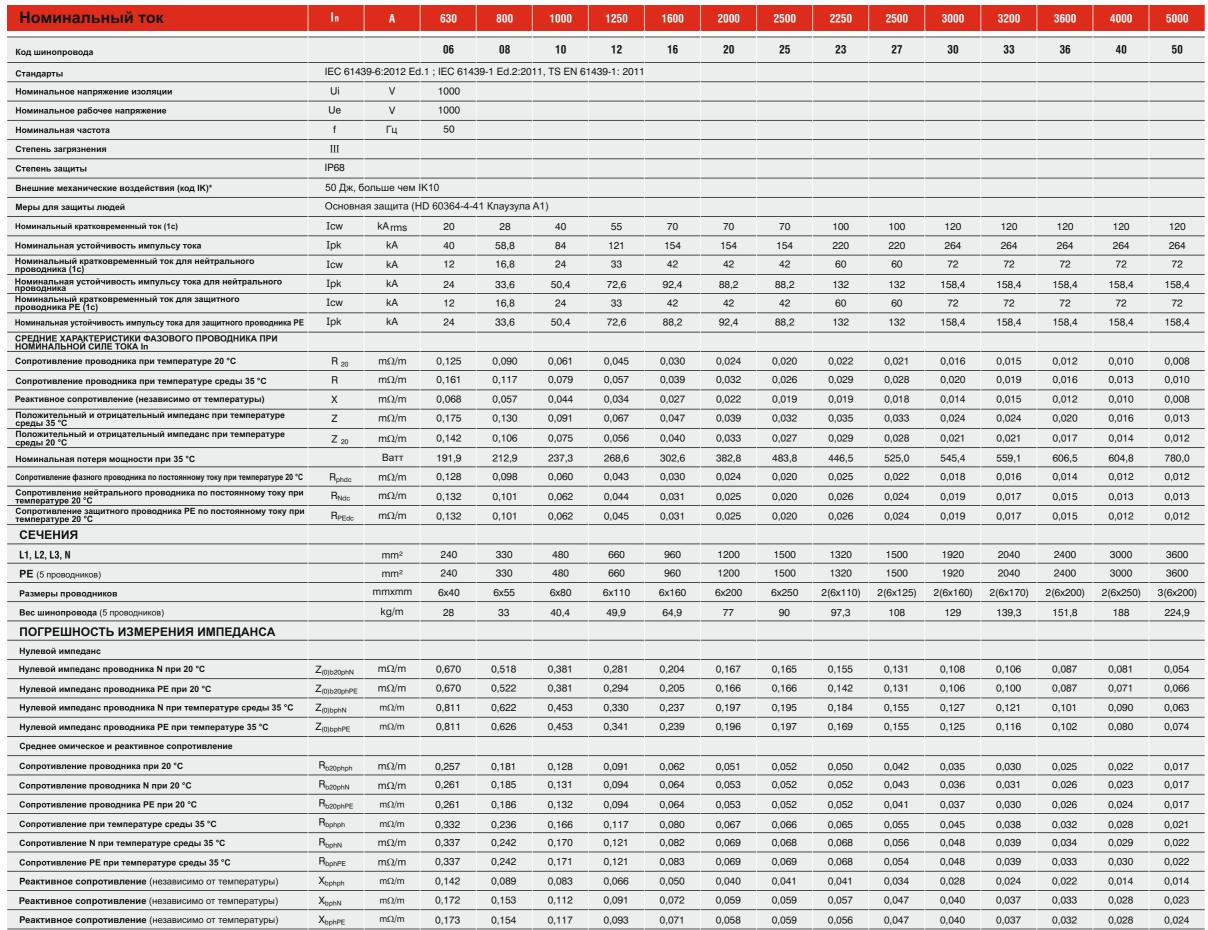


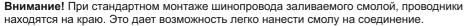

Предпроектная подготовка и анализ затрат

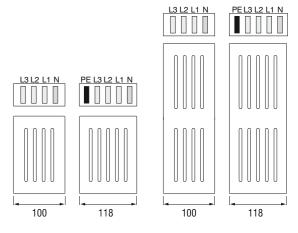

Перед выполнением проектирования и анализа затрат, необходимо предоставить в отдел проектирования нижеуказанные данные.

- Расположение и размеры проходов сквозь перекрытия, где будет монтироваться шинопровод.
- Высота этажа и толщина перекрытия (h = ... a = ...)
- Способ питания вертикальной линии (через шинопровод или кабель)

Получив вышеуказанные данные в соответствии с образцом, указанным на рисунке 1, производитель предоставит Вам ТКП.






▶ Технические характеристики

Алюминиевый проводник (AI)

Расчет потерь напряжения

Расчет потерь напряжения для линий распределения и передачи энергии с использованием шинопроводных систем, производится с учетом нижеперечисленных критериев.

$$\Delta U = \sqrt{3.L.I.(R_1.Cos\phi + X_1.Sin\phi)} \ 10^{-3} [V]$$

U = потеря напряжения (В)

= длина линии (м)

= ток линии тока или нагрузка в линии (А)

= активное сопротивление (мОм/м)

= реактивное сопротивление (мОм/м)

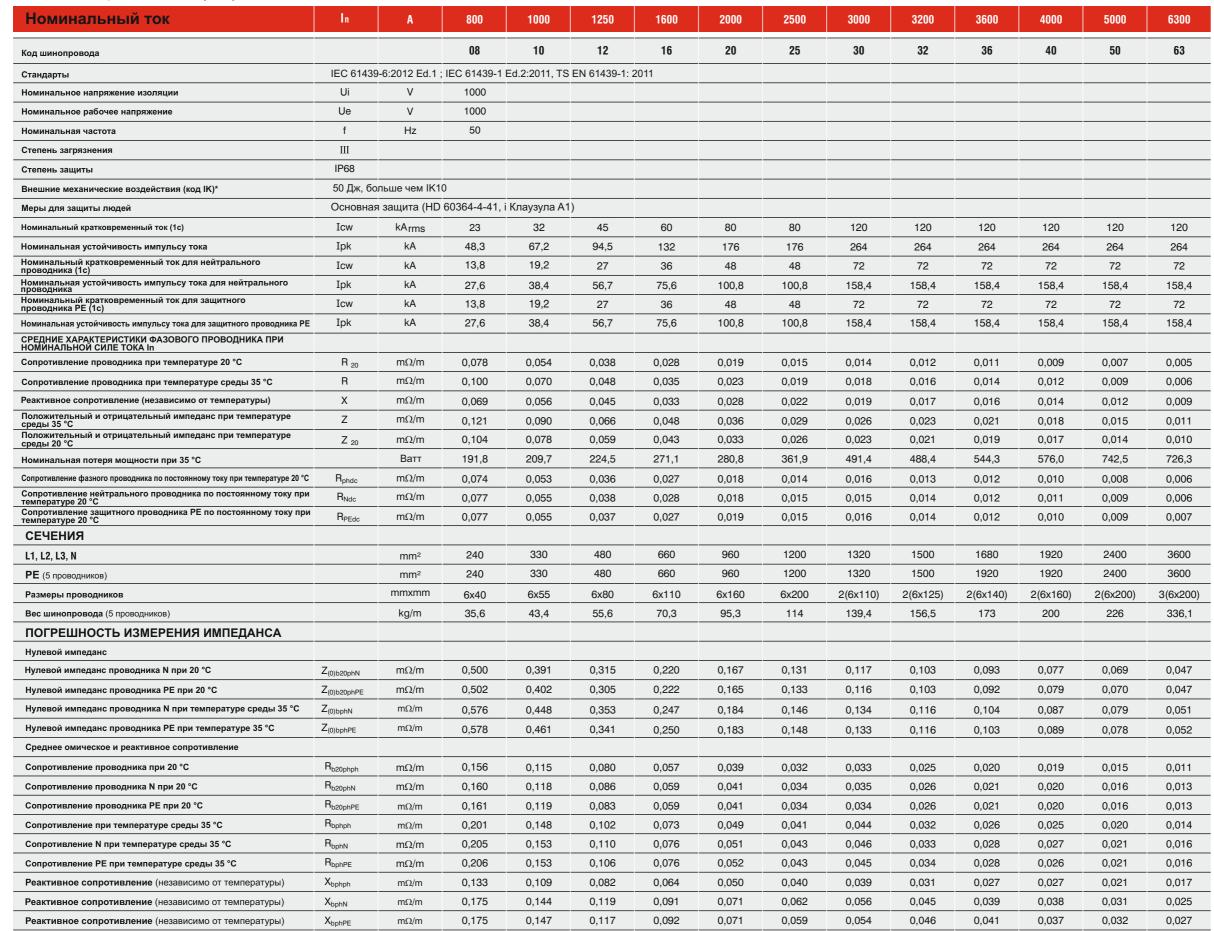
Cosφ = коэффициент мощности

точка ввода

S

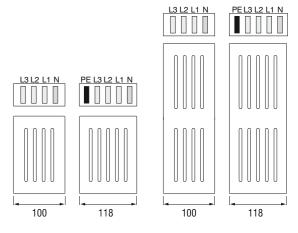
(1)Все характеристики фазового проводника определены в соответствии с приложением ВВ к IEC 61439-6.

⁽²⁾Погрешность измерения нулевого импеданса указана на основании стандартов IEC 61439-6 приложение CC.


(3)Среднее омическое и реактивное сопротивления указаны на основании стандартов IEC 61439-6 приложение DD.

* Согласно IEC 62262 степень защиты IK10 соответствует энергии удара 20 Дж.

**Шинопроводы, заливаемые смолой,изготавливаются минимум с 3 проводниками.


▶ Технические характеристики

Медный проводник (Cu)

Внимание! При стандартном монтаже шинопровода заливаемого смолой, проводники находятся на краю. Это дает возможность легко нанести смолу на соединение.

Расчет потерь напряжения

Расчет потерь напряжения для линий распределения и передачи энергии с использованием шинопроводных систем, производится с учетом нижеперечисленных критериев.

$$\Delta U = \sqrt{3.L.I.(R_1.Cos_{\phi} + X_1.Sin_{\phi})} \cdot 10^{-3} [V]$$

U = потеря напряжения (В)

= длина линии (м)

Ι

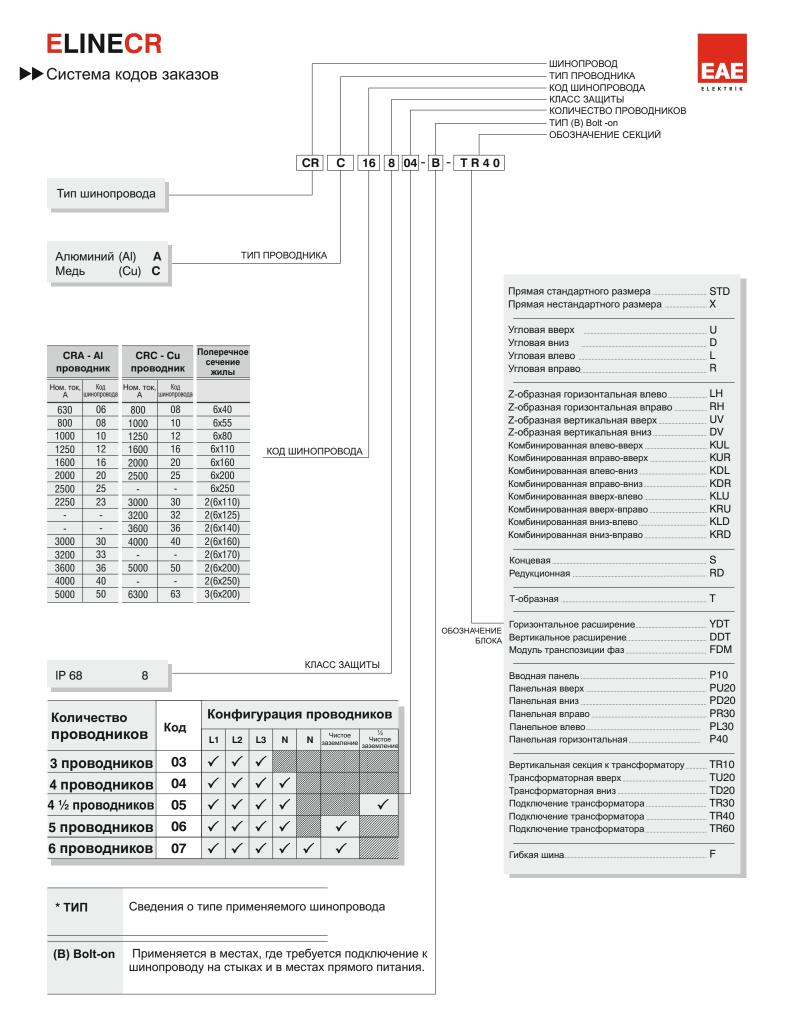
= ток линии тока или нагрузка в линии (А)

= активное сопротивление (мОм/м)

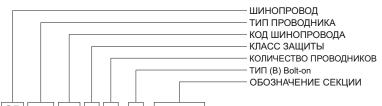
= реактивное сопротивление (мОм/м)

Cosφ = коэффициент мощности

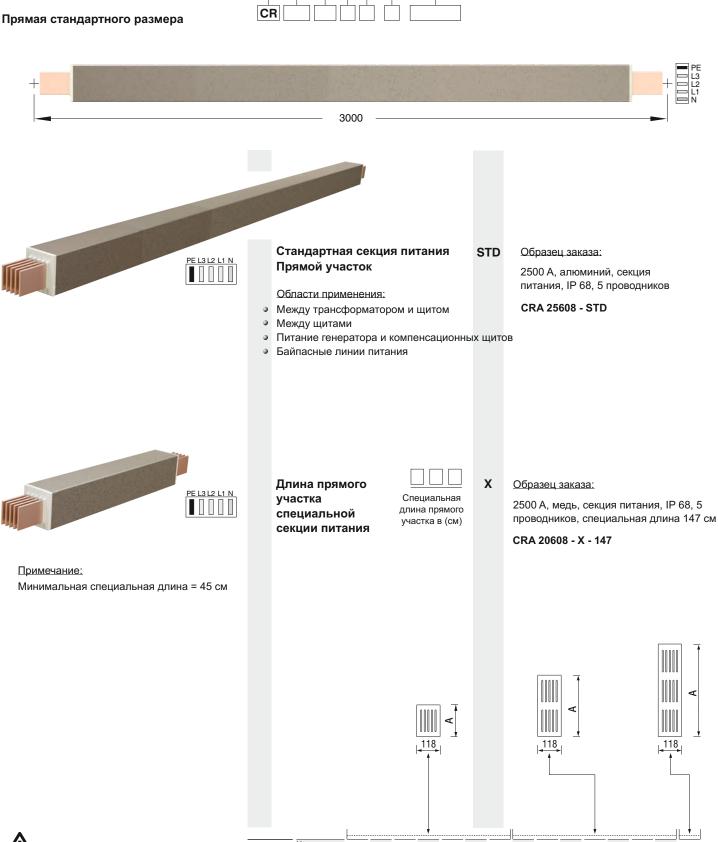
S точка ввода


(1)Все характеристики фазового проводника определены в соответствии с приложением ВВ к IEC 61439-6.

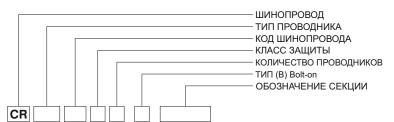
⁽²⁾Погрешность измерения нулевого импеданса указана на основании стандартов IEC 61439-6 приложение CC.

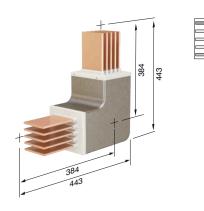

(3)Среднее омическое и реактивное сопротивления указаны на основании стандартов IEC 61439-6 приложение DD.

* Согласно IEC 62262 степень защиты IK10 соответствует энергии удара 20 Дж.


**Шинопроводы, заливаемые смолой, изготавливаются минимум с 3 проводниками.

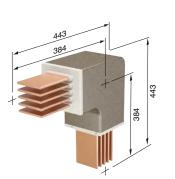
▶ Секции стандартные прямые




При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

		ļ			*				ļ							ļ . *
CRA - AI	Номинальная сила тока (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	08	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока (A)	800	1000	1250	1600	2000	2500	<u> </u>	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
A	(мм)	90	105	130	160	210	250	300	310	340	370	410	430	490	590	730

▶▶ Поворотные секции



U

Образец заказа:

3200 A, медь, секция питания, IP 68, 5 проводников

CRC 32608 - U

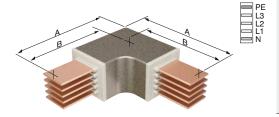
Угловая вниз

D

Образец заказа:

3200 А, медь, секция питания, IP 68, 5 проводников

CRC 32608 - D


Угловая влево

L

Образец заказа:

2000 A, медь, секция питания, IP 68, 5 проводников

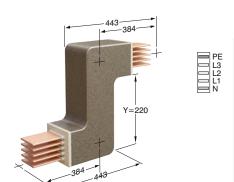
CRC 20608 - L

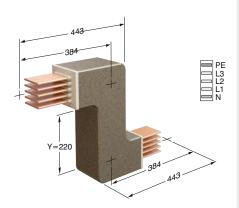
R

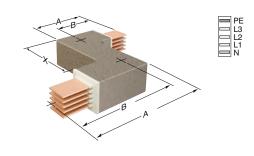
Образец заказа:

2000 A, алюминий, секция питания, IP 68, 5 проводников

CRA 20608 - R

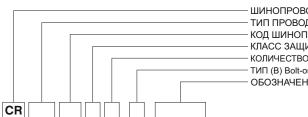

При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

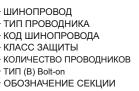

CRA - AI	Номинальная сила тока (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	80	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока (A)	800	1000	1250	1600	2000	2500	$\overline{}$	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25	_	30	32	36	40	-	50	-	63
Α	(мм)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(мм)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690


Размеры, указанные выше, являются минимальными значениями


■ Обращайтесь к нам за нестандартными компонентами.

▶ Поворотные секции





Внимание!

При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

Z-образная вертикальная вверх

Примечание: Y=min: 22 см,

*Максимальные размеры, смотрите в таблице

Образец заказа:

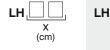
UΥ

Y=25 см, 2000 A, алюминиевая секция питания, IP 68, 5 проводников

CRC 20608 - UV25

Z-образная вертикальная вниз

<u>Примечание:</u> Y=min: 22 см,


*Максимальные размеры, смотрите в таблице.

Образец заказа:

Y = 25 см, 2000 A, алюминиевая секция питания, IP 68, 5 проводников

CRA 20608 - DV25

Z-образная горизонтальная влево

Примечание: X=min: 30 см,

* Максимальные размеры, смотрите в

таблице.

* Если нет возможности использовать два угла, то можно использовать эти секции.

Образец заказа:

X=60 см, 3200 A, медная секция питания, IP 68, 5 проводников

CRC 32608 - LH60

Правый горизонтальный отвод

<u>Примечание:</u> X=min: 30 см,

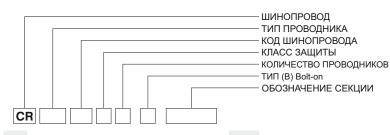
*Максимальные размеры, смотрите в таблице.

* Если нет возможности использовать два угла, то можно использовать эти секции.

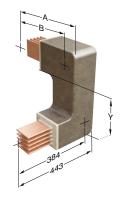
Образец заказа:

X=60 см, 3200 A, медная секция питания, IP 68, 5 проводников

CRC 32608 - RH60


CRA - AI	Номинальная сила тока (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	08	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока (A)	800	1000	1250	1600	2000	2500	<u> </u>	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25	_	30	32	36	40	-	50	-	63
Α	(мм)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(мм)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690
Х	(мм)	290	305	330	360	410	450	500	510	540	570	610	630	690	710	930

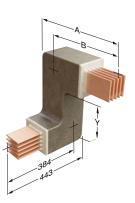
RH


■ Пожалуйста, обращайтесь к нам за нестандартными компонентами

[■] Размеры, указанные выше, являются минимальными значениями

▶ Поворотные секции

Комбинированная влево-вверх


KUL

Образец заказа:

3200 А, Медь

Секция питания, ІР 68, 5 проводников

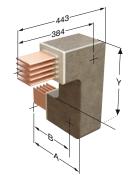
CRC 32608 - B - KUL

Комбинированный вправо-вверх

Примечание: Y= min. 30 см

Примечание:

Y = min. 30 см

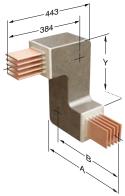

KUR

Образец заказа:

3200 А, Медь

Секция питания, ІР 68, 5 проводников

CRC 32608 - B - KUR


Примечание: Y= min. 30 см KDL

Образец заказа:

3300 А, медь

Секция питания, ІР 68, 5 проводников

CRC 32608 - B - KDL

Примечание:

Y= min. 30 см

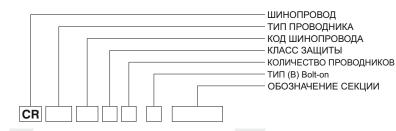
Комбинированная вправо-вниз К D R

Образец заказа:

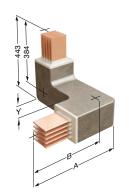
3200 А, Медь

Секция питания, ІР 68, 5 проводников

CRC 32608 - B - KDR


При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

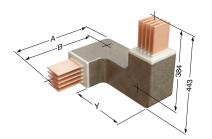
	Номинальная сила тока (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	08	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока (A)	800	1000	1250	1600	2000	2500	_	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25	_	30	32	36	40	-	50	-	63
A	(мм)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(мм)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690


Размеры, указанные выше, являются минимальными значениями

Пожалуйста, обращайтесь к нам за нестандартными компонентами

▶ Поворотные секции

Комбинированная вверх-влево


Примечание: Y= min. 30 см

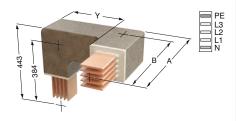
Образец заказа:

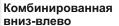
3200 A, Медь Секция питания, IP 68, 5 проводников

CRC 32608 - B - KLU

Комбинированная вверх-вправо

Примечание: Y= min. 30 см




Образец заказа:

3200 А, Медь

Секция питания, ІР 68, 5 проводников

CRC 32608 - B - KRU

Примечание: Y= min. 30 см

KLD

Образец заказа:

3200 А, Медь

Секция питания, ІР 68, 5 проводников

CRC 32608 - B - KLD

Внимание!

При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

Комбинированная вниз-вправо

Примечание: Y= min. 30 см

KRD

Образец заказа:

3200 А, Медь

Секция питания, IP 68, 5 проводников

CRC 32608 - B - KRD

CRA - AI	Номинальная сила тока (А)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	08	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока (A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25	_	30	32	36	40	-	50	-	63
A	(мм)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(мм)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690

Размеры, указанные выше, являются минимальными значениями

■ Пожалуйста, обращайтесь к нам за нестандартными компонентами

▶ Секции стандартные специальные

Редукционная секция

Используется для изменения поперечного сечения шинопровода.

Примечание:

Ответственность за решение и выбор модуля редуктора и защиты на нижней стороне лежит на клиенте.

Редукционная секция

RD Образец заказа:

2000А/1600А, Медная секция питания, IP 68, 5 проводников

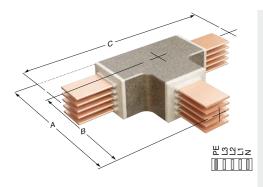

CRC 20608 - RD17

Таблица Снижения редукционных секций

	CRA	- A	Л	ов	одн	ик									
	Номиналь		(Сок	фаг	цен	НЫ	й ко	ЭДΙ	ШИН	ЮПр	ОВ	ода	l	
	тока	06	08	10	12	16	20	25	23	27	30	33	36	40	50
	630	✓	-	-	ı	-	-	-	ı	-	-	-	-	-	-
	800	✓	✓	-	ı	-	-	-	ı	-	-	-	-	-	-
	1000	-	✓	✓	ı	-	-	-	ı	-	-	-	-	-	-
	1250	-	-	✓	√	-	-	-	ı	-	-	-	-	-	-
	1600	-	-	-	✓	✓	-	-	-	-	-	-	-	-	-
И	2000	-	-	-	-	✓	✓	-	-	-	-	-	-	-	-
ш	2500	-	-	-	-	-	✓	✓	-	-	-	-	-	-	-
	2250	-	-	-	-	-	-	√	✓	-	-	-	-	-	-
	2500	-	-	-	-	-	-	√	✓	-	-	-	-	-	-
	3000	-	-	-	-	-	-	-	✓	✓	-	-	-	-	-
	3200	-	-	-	-	-	-	-	-	✓	√	-	-	-	-
	3600	-	-	-	-	-	-	-	-	-	√	√	-	-	-
	4000	-	-	-	-	-	-	-	-	-	-	✓	✓	-	-
	5000	-	-	-	-	-	-	-	-	-	-	-	✓	✓	-
														_	

CRC	- C	Си Г	lpo	вод	ниі	(
		C	экра	аще	HHE	ый к	ОД	ШИН	юпр	ОВО	ода	
тока	08	10	12	16	20	25	30	32	36	40	50	63
800	>	-	-	ı	-	-	-	-	-	-	-	-
1000	>	✓	-	ı	-	-	-	-	-	-	-	-
1250	ı	✓	✓	ı	-	-	-	-	-	-	-	-
1600	-	-	✓	✓	-	-	-	-	-	-	-	-
2000	-	-	-	✓	✓	-	-	-	-	-	-	-
2500	-	-	-	-	✓	✓	-	-	-	-	-	-
3000	-	-	-	-	-	✓	✓	-	-	-	-	-
3200	-	-	-	-	-	-	✓	√	-	-	-	-
3600	-	-	-	-	-	-	✓	✓	-	-	-	-
4000	-	-	-	-	-	-	-	✓	✓	-	-	-
5000	-	-	-	-	-	-	-	-	✓	✓	-	-
6300	-	-	-	-	-	-	-	-	-	✓	✓	-
	Номинальная сила тока 800 1000 1250 1600 2000 2500 3000 3200 3600 4000 5000	Номиналь ная сила тока 800	Номиналь тока 10 м 10	Номиналь тока 10 м 10	Номиналь тока 10 м тока	Номиналь тока 108 10 12 16 20 100 100 100 100 100 100 100 100 100	Has Curia Tokia 08 10 12 16 20 25	Номиналь ная сила тока 800	Номиналь ная сила тока 800	Номиналь тока	Номиналь ная сила тока 800	Номиналь ная сила тока 800

2

Секция Т-образная

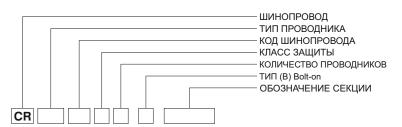
Т Образец заказа:

2500 А, медь Секция питания, IP 68, 5 проводников

CRC 25608 - T

 Номинальную силу тока и коды шинопровода смотрите в таблице.

Внимание!


При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

CRA - AI	Номинальная сила тока (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	08	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока (A)	800	1000	1250	1600	2000	2500	\equiv	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25		30	32	36	40	-	50	-	63
Α	(мм)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(мм)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690
С	(мм)	740	754	780	810	860	900	950	960	990	1020	1060	1080	1140	1240	1380

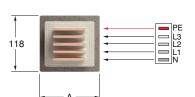
Размеры, указанные выше, являются минимальными значениями

 Пожалуйста, обращайтесь к нам за нестандартными компонентами

Секции концевые и компенсационные

Секция компенсационная вертикальная

Рекомендуется использовать одну вертикальную секцию расширения, на каждом этаже, между фиксированными точками опоры.


Применяется по 1 шт. между каждым этажом на вертикальных линиях многоэтажных зданий.

■ Пожалуйста, обращайтесь к нам за рекомендациями на стадии проектирования. **DDT**

Образец заказа:

2500 А, Медная секция питания, IP 68, 5 проводников

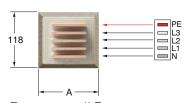
CRC 25608 - DDT

700

Секция компенсационная горизонтальная

Применяется на длинных горизонтальных линиях в качестве расширительных элементов, через каждые 40 м и на деформационных швах зданий.

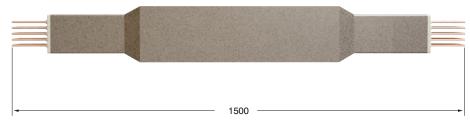
 Пожалуйста, обращайтесь к нам за рекомендациями на стадии проектирования.


YDT

Образец заказа:

2500 A, Медь Секция питания, IP 68, 5 проводников

CRC 25608 - YDT


Примечание: 1) Если линия шинопроводов проходит через дилатацию здания, то в обязательном порядке требуется использование расширительного модуля.

- 2) Для очень длинных свободных линий (75м) прикрепленных на подвески с торцевыми модулями на конце, требуется использование расширительных модулей.
- 3) Расширительные модули могут сдвигаться на 25 мм.

Внимание!

При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

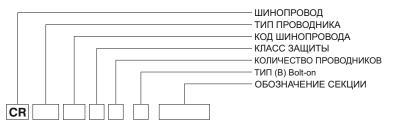

■ Внимание! Общая длина секции должна быть приведена к 1500 мм после монтажа

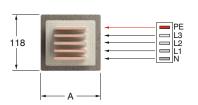
Таблица размеров FDM

CRA - AI	Номинальная сила тока(A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	08	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока(A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
A	(мм)	90	105	130	160	210	250	300	310	340	370	410	430	490	590	730

 Размеры, указанные выше, являются минимальными значениями ■ Пожалуйста, обращайтесь к нам за нестандартными компонентами

► Секции концевые и компенсационные

Применяется для исправления изменений порядка фаз, возникающих в результате вертикальных-горизонтальных поворотов линий шинопроводов


Модуль скрещивания фаз

FDM

Образец заказа:

2500 A, Медь Секция питания, IP 68, 5 проводников

CRC 25608 - FDM

Секция концевая

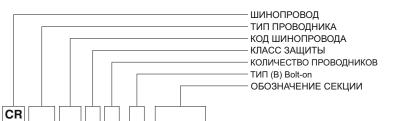
Применяется для закрытия концевых участков линий.

S

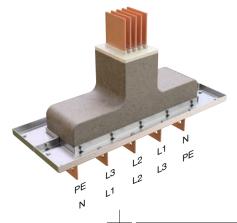
Образец заказа:

2500 A, Медь Секция питания, IP 68, 5 проводников

CRC 25608 - S


Внимание!

При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.


CRA - AI	Номинальная сила тока (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
проводник	Код шинопровода	06	08	10	12	16	20	25	23	27	-	30	33	36	40	50
CRC - Cu	Номинальная сила тока (A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000	-	6300
проводник	Код шинопровода	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
Α	(мм)	90	105	130	160	210	250	300	310	340	370	410	430	490	590	730

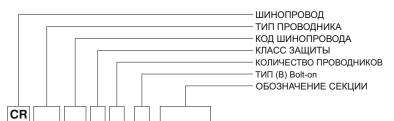
Размеры, указанные выше, являются минимальными значениями

▶ Секции панельные

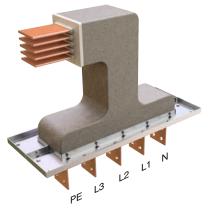
Щитовое подключение

- Расстояние между проводниками может изменяться в пределах +-5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей смотрите в таблицах на страницах 23 и 24.

P10


Образец заказа:

2500 А, Медь Секция питания, IP 68, 5 проводников Для щитовой линии питания


CRC 25608 - P10

▶ Секции панельные

Секция панельная вводная "вверх" Ввод панель

- Расстояние между проводниками может изменяться в пределах +-5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей смотрите в таблицах на страницах 23 и 24.

PU20

Образец заказа:

3600 А, Медь, Секция питания, ІР 68, 5 проводников Щитовая линия питания

CRC 36608 - PU20

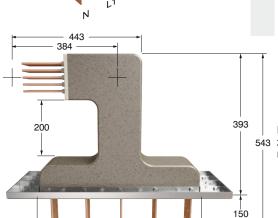
Размеры "A" и "B" для PR30 и PL30 те 543 же, что и размеры левого и правого поворота.

Секция панельная вводная

- Расстояние между проводниками может изменяться в пределах +-5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями

"вниз"

Ввод в панель


■ Размеры соединителей смотрите в таблицах на страницах 23 и 24.

PD20

Образец заказа:

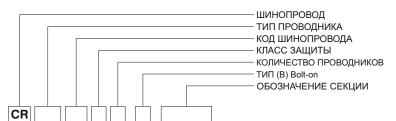
3600 А, Медь, Секция питания, ІР 68, 5 проводников Щитовая линия питания

CRC 36608 - PD20

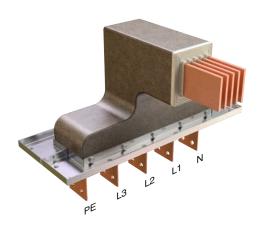
100

446-

100


L3

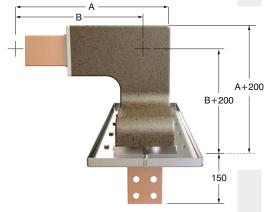
Размеры "A" и "B" для PR30 и PL30 те 543 же, что и размеры левого и правого поворота.


100

100

▶ Секции панельные

Секция панельная вводная "вправо" Ввод в панель


- Расстояние между проводниками может изменяться в пределах +- 5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей см. в таблицах на стр. 23 и 24.

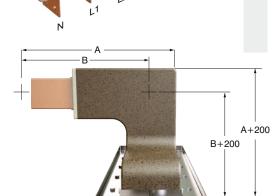
PR30

Образец заказа:

3600 А, Медь, Секция питания, IP 68, 5 проводников Щитовая линия питания

CRC 36608 - PR30

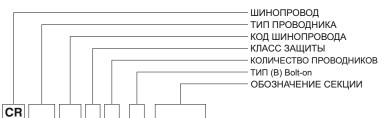
Размеры "A" и "В" для PR30 и PL30 те же, что и размеры левого и правого поворота.

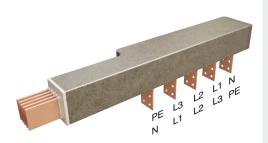

Секция панельная вводная "влево"

- Расстояние между проводниками может изменяться в пределах +– 5 мм.
- Обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей см. в таблицах на стр. 23 и 24.

PL30 Образец заказа:

3600 А, Медь, Секция питания, IP 68, 5 проводников Щитовая линия питания


CRC 36608 - PL30


150

Размеры "A" и "В" для PR30 и PL30 те же, что и размеры левого и правого поворота.

▶ Секции присоединительные к трансформаторам

Секция трансформаторная

- Расстояние между проводниками может изменяться в пределах +-5 мм.
- Обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей смотрите в таблицах на страницах 23 и 24.

P40A

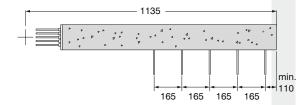
Образец заказа:

3600 А, медь, Секция питания, ІР 68, 5 проводников для щитовой линии питания

CRC 36608 - P40A

Секция трансформаторная

- Расстояние между проводниками может изменяться в пределах +- 5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей смотрите в таблицах на страницах 23 и 24.


P40B

Образец заказа:

3600 А, Медь

Секция питания, ІР 68, 5 проводников для щитовой линии питания

CRC 36608 - P40B

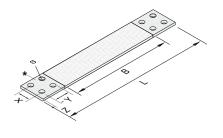
Гибкие шины

L

- (cm)
- *Будут изготовлены в соответствии с деталями
- Используются для подключения между трансформаторными вводами и шинопроводом
- Используется для подключения между щитом и шинопроводом

F Образец заказа:

800 А, Медь

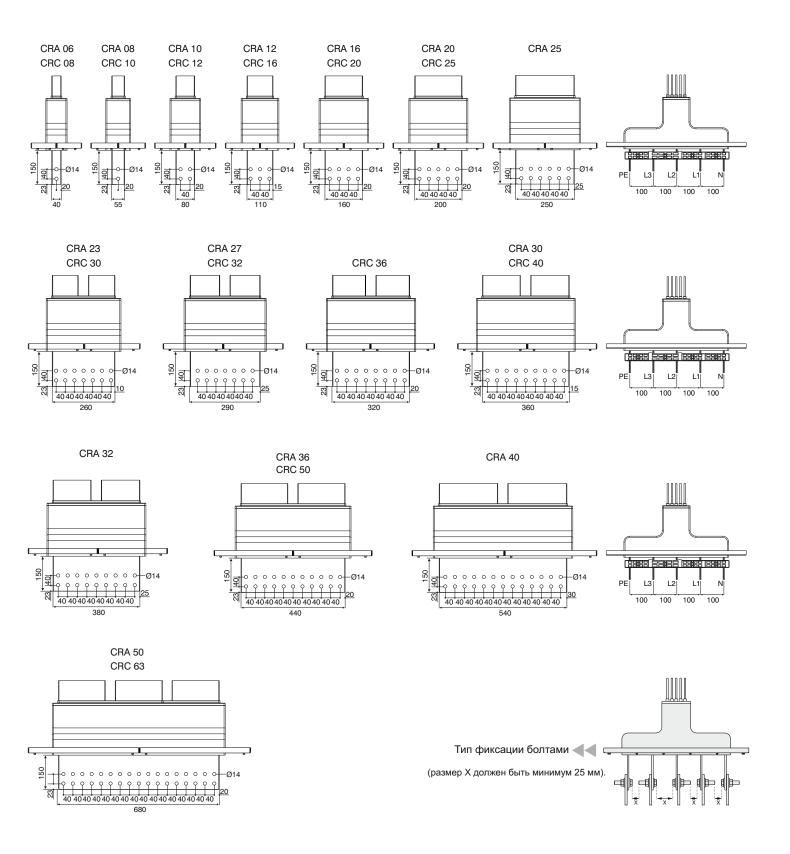

CRC 0800 - F

В=....мм Х=....мм

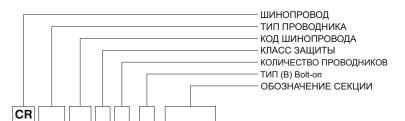
Y=....мм

Z=....мм

ø=....мм

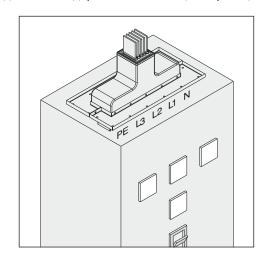


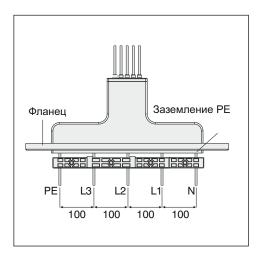
▶ Секции присоединительные к панелям


Присоединительные размеры панельных секций (P10, PU20, PD20, PL30, PR30, P40)

Пожалуйста, обращайтесь к нам за нестандартными компонентами

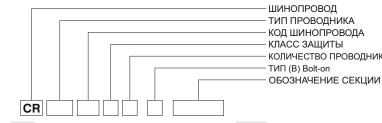
[■] Расстояние между проводниками может изменяться в пределаМ Размеры, указанные выше, являются минимальными +- 5 мм

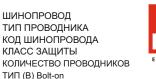

►► Присоединительные размеры панельных секций



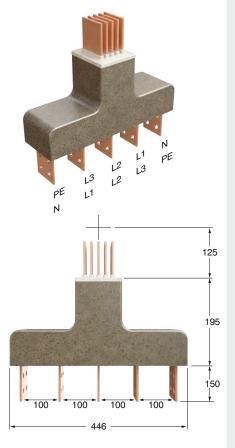
Размеры фланцев секций присоединительных к панелям

(производятся в стандартной комплектации с фланцами)





Отверстие на Шинопровод Фланец щитового плате щита E- Line CR подключения 12,5 12,5 12,5 600

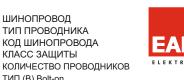

Алюми	ıний (AI)	Медь (Cu)				
Номинальный ток	Код шинопровода	Номинальный ток		Размер проводника	А (мм)	В (мм)	Количество отверстий по длине В
630	06	800	08	6x40	145	190	2
800	08	1000	10	6x55	160	205	2
1000	10	1250	12	6x80	185	230	2
1250	12	1600	16	6x110	215	260	3
1600	16	2000	20	6x160	265	310	3
2000	20	2500	25	6x200	305	350	4
2500	25	_	-	6x250	355	400	4
2250	23	3000	30	2(6x110)	365	410	4
2500	27	3200	32	2(6x125)	395	440	4
-	-	3600	36	2(6X140)	425	470	4
3000	30	4000	40	2(6x160)	465	510	5
3200	33	-	-	2(6x170)	485	530	5
3600	36	5000	50	2(6x200)	545	590	5
4000	40	-	-	2(6x250)	645	690	6
5000	50	6300	63	3(6x200)	785	830	8

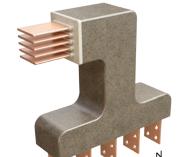
▶ Секции присоединительные к трансформаторам

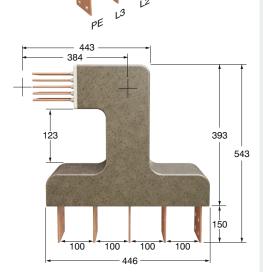
Подключение трансформатора

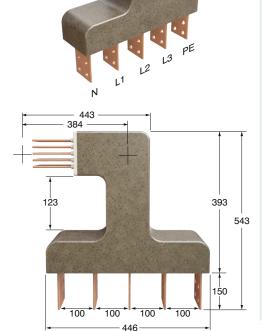
- Расстояние между проводниками может изменяться в пределах +- 5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей см. в таблицах на стр. 29.

T10


Образец заказа:


2500 А, Медь Секция питания, ІР 68, 5 проводников, Секция питания щита


CRC 25608 - T10


▶ Секции присоединительные к трансформаторам

Верхнее подключение трансформатора

- Расстояние между проводниками может изменяться в пределах +- 5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей см. в таблицах на

Размеры "A" и "B" для PR30 и PL30 те же, что и размеры левого и правого поворота.

Нижнее подключение трансформатора

- Расстояние между проводниками может изменяться в пределах +- 5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей смотрите в таблицах на странице 29.

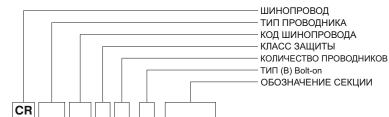
Размеры "A" и "B" для PR30 и PL30 те же, что и размеры левого и правого поворота.

TU20

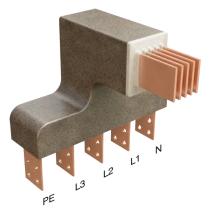
Образец заказа:

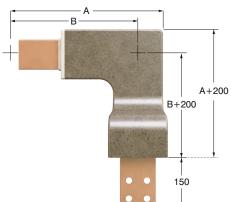
3600 А, Медь Секция питания, ІР 68, 5 проводников Щитовая линия питания

CRC 36608 - TU20


TD20

Образец заказа:


3600 А, Медь Секция питания, ІР 68, 5 Проводников Щитовая линия питания


CRC 36608 - TD20

► Секции присоединительные к трансформаторам

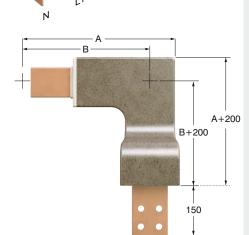
- Расстояние между проводниками может изменяться в пределах +-5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей смотрите в таблицах на странице 29.

Размеры "A" и "B" для PR30 и PL30 те же, что и размеры левого и правого поворота.

TR30

Образец заказа:

3600 А, Медь Секция питания, IP 68, 5 проводников Щитовая линия питания


CRC 36608 - TR30

Правое подключение трансформатора

- Расстояние между проводниками может изменяться в пределах +- 5 мм.
- Пожалуйста, обращайтесь к нам за нестандартными компонентами.
- Указанные размеры являются минимальными значениями
- Размеры соединителей смотрите в таблицах на странице 29.

Размеры "A" и "B" для PR30 и PL30 те же, что и размеры левого и правого поворота.

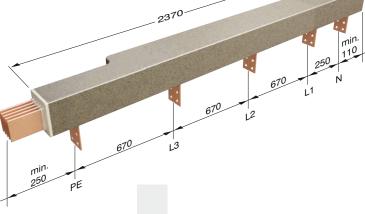
TL30 Образец заказа:

3600 А, медь Секция питания, IP 68, 5 проводников Щитовая линия питания

CRC 36608 - TL30

▶ Секции присоединительные к трансформаторам

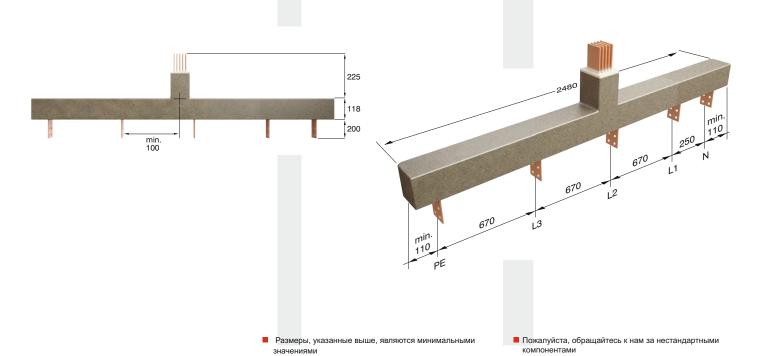
Для выполнения присоединения трансформаторов к панелям, проектный отдел фирмы поставщика проектирует и изготавливает чертежи по Вашему запросу.


Для разработки проекта необходимо:

- Архитектурное расположение трансформаторных и панельных помещений.
- Размеры трансформаторами расстояние между выводами.
- Размеры панели.

Размеры соединителей смотрите в таблицах на странице 29.

Подключение трансформатора **TR41** Образец заказа: 2500 А, Медь Секция питания, ІР 68, 5 проводников CRC 25608 - TR41

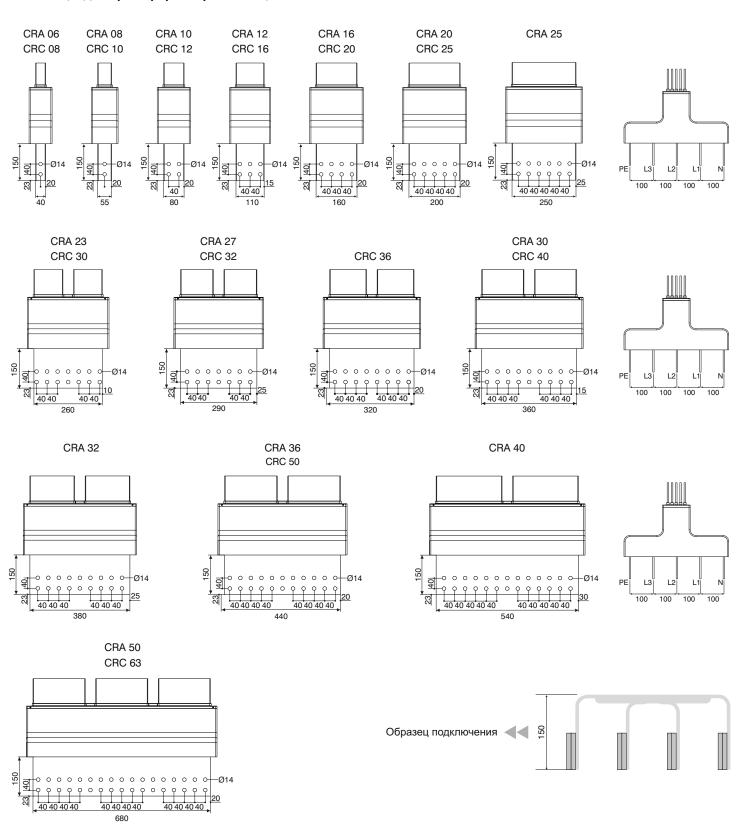

Подключение трансформатора

TR61 Образец заказа:

2500 А, Медь

Секция питания, ІР 68, 5 проводников

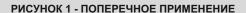
CRC 25608 - TR61

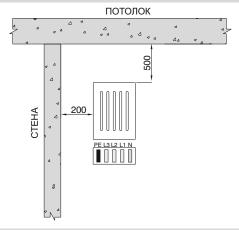

▶ Секции присоединительные к трансформаторам

Секции присоединительные к трансформаторам

Подключения трансформаторов (T10, TU20, TD20, TL30, TR30, T40)

Фланцы для трансформаторных секций не поставляются




Пожалуйста, обращайтесь к нам за нестандартными компонентами

 [■] Расстояние между проводниками может изменяться в пределах +-5 мм

▶ Применение шинопровода E-Line CR на вертикальных и горизонтальных участках.

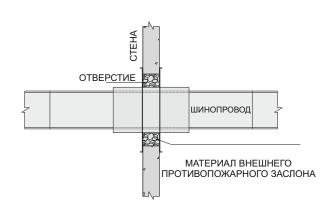

РИСУНОК 5- ПЕРЕСЕЧЕНИЕ ПОД БАЛКОЙ А В ПЛОСКОСТНОМ ПРИМЕНЕНИИ

РИСУНОК 2- ПОПЕРЕЧНОЕ ПРИМЕНЕНИЕ

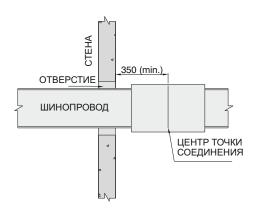
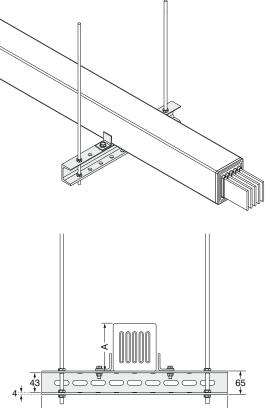

РИСУНОК 6 - ПРИМЕР ПЕРЕСЕЧЕНИЯ СТЕНЫ С ПРОТИВОПОЖАРНЫМ ЗАСЛОНОМ

РИСУНОК 3. ПЛОСКОСТНОЕ ПРИМЕНЕНИЕ

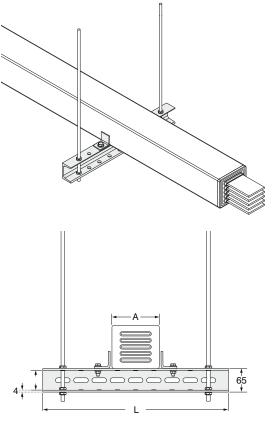
РИСУНОК 7 - ПЕРЕСЕЧЕНИЕ СТАНДАРТНОЙ СТЕНЫ

РИСУНОК 4 - ПЕРЕСЕЧЕНИЕ ПОД БАЛКОЙ А В ПОПЕРЕЧНОМ ПРИМЕНЕНИИ

Внимание!


- Для правильного монтажа расстояние от шинопровода до потолка должно быть не меньше 500 мм
- Соединение не должно пересекаться с балками
- Размеры, указанные выше, являются минимальными значениями
- Все размеры указаны в мм

▶ Элементы крепления шинопроводов

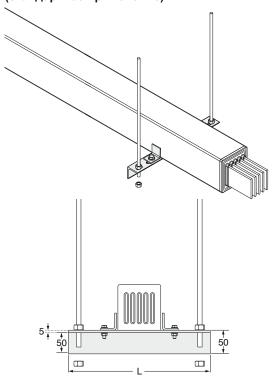

Опоры

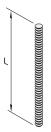
КОМПЛЕКТ ПОДВЕСА CR-UT ДЛЯ ПОПЕРЕЧНОГО ПРИМЕНЕНИЯ (СТАНДАРТНОЕ ПРИМЕНЕНИЕ)

	A - AI одник	СКС	- Cu одник	Поперечное сечение проводника	L	Α	Код заказа
Номинал ьная сила тока	Код шинопровода	Номинал ьная сила тока	Код шинопровода		(mm)	(mm)	
630	06	800	08	6x40	300	90	3025348
800	08	1000	10	6x55	300	105	3025348
1000	10	1250	12	6x80	300	130	3025348
1250	12	1600	16	6x110	350	160	3025348
1600	16	2000	20	6x160	400	210	3025348
2000	20	2500	25	6x200	400	250	3025348
2500	25	-	-	6x250	450	300	3025348

КОМПЛЕКТ ПОДВЕСА CR-UT ДЛЯ ПЛОСКОСТНОГО ПРИМЕНЕНИЯ (НЕСТАНДАРТНОЕ ПРИМЕНЕНИЕ)

	\ - AI одник	СВС		Поперечное сечение проводника	L	A	Код заказа
Номинал ьная сила тока	под Шинопровола	Номинал ьная сила тока	Код шинопровода		(мм)	(мм)	
630	06	800	80	6x40	350	90	3025347
800	08	1000	10	6x55	350	105	3025347
1000	10	1250	12	6x80	350	130	3025347
1250	12	1600	16	6x110	350	160	3025347
1600	16	2000	20	6x160	350	210	3025347
2000	20	2500	25	6x200	350	250	3025347
2500	25	-	-	6x250	350	300	3025347


^{■ *}Плоскостные приспособления поставляются только на особых условиях.


▶ Элементы крепления шинопроводов

Опоры

КОМПЛЕКТ ПОДВЕСА С КРОНШТЕЙНАМИ СЯ ДЛЯ ПОПЕРЕЧНОГО ПРИМЕНЕНИЯ (стандартное применение)

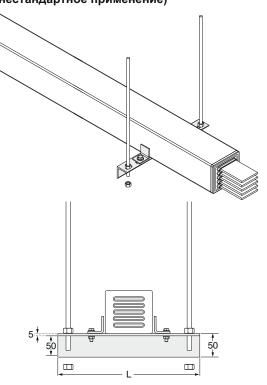
Резьбовой стержень

Блок расширения

Стальной болт

Диаметр отверстия, которое необходимо просверлить

UAS-K5

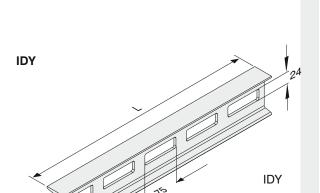

M10....Ø14 M12....Ø16

Стальная гайка

■ Пожалуйста, обращайтесь к нам за нестандартными размерами.

КОМПЛЕКТ ПОДВЕСА С КРОНШТЕЙНАМИ СЯ ДЛЯ ПОПЕРЕЧНОГО ПРИМЕНЕНИЯ (нестандартное применение)

Опоры

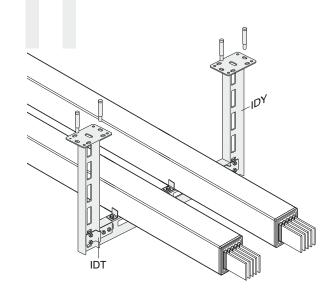

Описание	L (mm)	Код заказа
Опора UAS-K5 (1)	200	3005324
Опора UAS-K5 (2)	250	3005323
Опора UAS-K5 (3)	300	3005322
Опора UAS-K5 (4)	350	3005321
Опора UAS-K5 (5)	400	3005320
Опора UAS-K5 (6)	500	3005319
Опора UAS-K5 (7)	600	3005318
Опора UAS-K5 (8)	700	3005317
Опора UAS-K5 (9)	1100	3005316

Блоки подключения


Описание	L (mm)	Код заказа
Резьбовой стержень BRA 12-05 (M10)	500	5000037
Резьбовой стержень BRA 12-10 (M10)	1000	5000032
Резьбовой стержень BRA 14-05 (M12)	500	5000026
Резьбовой стержень BRA 14-10 (M12)	1000	5000034
Блок расширения BRA 13 (M10)	-	1004312
Блок расширения BRA 13 (M12)	-	1004282
Стальной болт BRA 9 (M10)		5000023
Стальной болт BRA 9 (M12)	-	5000022
Стальная гайка М10		1000522
Стальная гайка М12	-	1000964
Шайба M10		1000504
Шайба M12	-	1000505

▶ Элементы крепления шинопроводов

Опоры



Описание	L (MM)	Код заказа
IDY 300	300	3008242
IDY 400	400	3008290
IDY 500	500	3008289
IDY 600	600	3008288
IDY 700	700	3008287
IDY 800	800	3008286
IDY 900	900	3008285
IDY 1000	1000	3008284
IDY 1100	1100	3008283
IDY 1200	1200	3008282
IDY 1300	1300	3008236
IDY 1400	1400	3008281
IDY 1500	1500	3008280
IDY 1600	1600	3008241
IDY 1700	1700	3008240
IDY 1800	1800	3008239
IDY 1900	1900	3008238
IDY 2000	2000	3008237
IDD 300	300	3008314
IDD 400	400	3008313
IDD 500	500	3008312
IDD 600	600	3008311
IDD 700	700	3008310
IDD 800	800	3008309
IDD 900	900	3008308
IDD 1000	1000	3008307
IDD 1100	1100	3008306
IDD 1200	1200	3008305
IDD 1300	1300	3008304
IDD 1400	1400	3008303
IDD 1500	1500	3008302
IDD 1600	1600	3008301
IDD 1700	1700	3008300
IDD 1800	1800	3008299
IDD 1900	1900	3008298
IDD 2000	2000	3008297

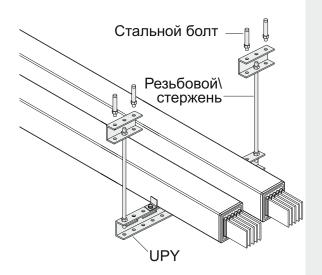
3008297

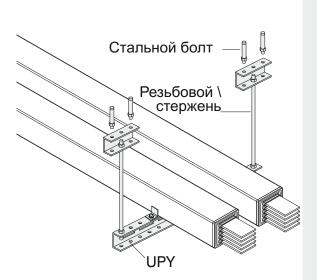
3008279

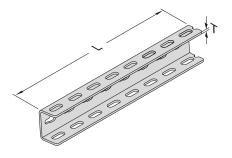
КОД ЗАКАЗА ДЛИНА L (mm)

Крепление опоры IDT

■ Пожалуйста, обращайтесь к нам за нестандартными размерами

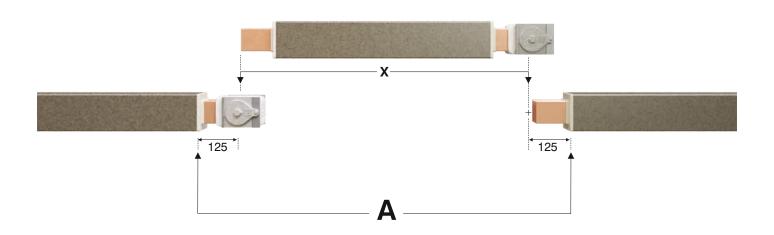

▶ Элементы крепления шинопроводов


EAE



КОД ЗАКАЗА ДЛИНА L (mm)

Описание	T (mm)	L (mm)	Код заказа
UPY 300	4	300	3004487
UP1 300	4	300	3004467
UPY 400	4	400	3004489
UPY 500	4	500	3004491
UPY 600	4	600	3004493
UPY 700	4	700	3004495
UPY 800	4	800	3004496
UPY 900	4	900	3004497
UPY 1000	4	1000	3004498
UPY 1100	4	1100	3004499
UPY 1200	4	1200	3004500
UPY 1500	4	1500	3004503


Секции нестандартного размера

После монтажа стандартных секций шинопроводов, в местах несоответствия стандартным размерам и в других подобных местах, используются секции шинопроводов нестандартных размеров менее 3м. Минимальный нестандартный размер должен составлять 35см.

Размер А замеряется в сантиметрах с угла одного корпуса профиля шинопровода до угла другого корпуса профиля. Затем, вычитая из замеренного значения 25см, определяется нестандартный размер.

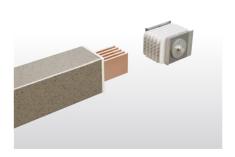
X = A – 25 (см) X= размер нестандартной секции шинопровода (модуль шинопровода будет изготовлен по размеру X).



0.0	х - АІ одник	СRС	- Cu одник	Поперечное сечение проводника	Дополнительно используемое количество смолы
Номиналь ная сила тока	Код шинопровода	Номиналь ная сила тока	Код шинопровода	Kesit	Кг
630	06	800	08	6x40	13
800	08	1000	10	6x55	15
1000	10	1250	12	6x80	17
1250	12	1600	16	6x110	19
1600	16	2000	20	6x160	23
2000	20	2500	25	6x200	26
2500	25	-	-	6x250	30
2250	23	3000	30	2(6x110)	40
2500	27	3200	32	2(6x125)	44
-	-	3600	36	2(6x140)	46
3000	30	4000	40	2(6x160)	48
3200	33	-	-	2(6x170)	50
3600	36	5000	50	2(6x200)	54
4000	40	-	-	2(6x250)	62
5000	50	6300	63	3(6x200)	82

При стандартном монтаже шинопровода заливаемой смолой, проводники находятся с краю. Это дает возможность легко нанести смолу на соединение.

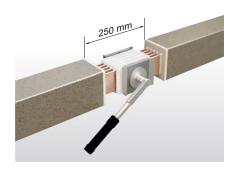
Полный смешанный вес 1 контейнера составляет 15 кг.



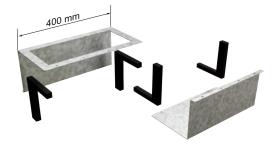
 Количество должно быть определено в соответствии с количеством соединений в проекте и потом заказано отдельно.

▶▶ Горизонтальное применение шинопровода, заливаемой смолой

1

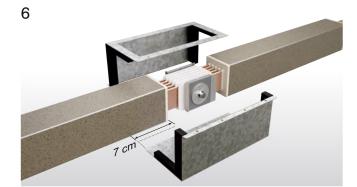

Проводники следует очистить с помощью ткани, чтобы удалить пыль и влагу. После этого установите и зафиксируйте соединительный блок.

2


Второй шинопровод вводится и устанавливается в соединительный блок.

3

После проверки трех частей на правильность выравнивания и расстояния между двумя участками шинопровода 25 см затяните соединение с моментом 83 Нм с помощью динамометрического ключа.


4

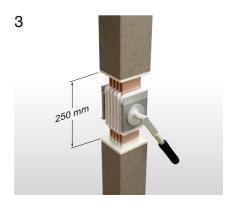
Соберите формы для литья и установите резиновые герметизирующие ленты в профильные сходы.

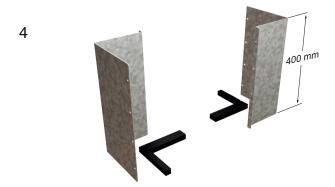
Перед скреплением формы для литья нанесите воск для извлечения из формы на все внутренние поверхности формы и подождите, пока воск полностью высохнет. Очень важно обеспечить удаление форм для литья после отверждения.

Пластины формы для литья должна быть закреплены на расстоянии около 7 см от конца шинопровода.

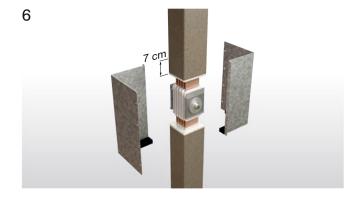
За дополнительной информацией обращайтесь к инструкциям по монтажу.

▶ Вертикальное применение шинопровода E-Line CR




Проводники следует очистить с помощью ткани, чтобы удалить пыль и влагу. После этого установите и зафиксируйте соединительный блок.

Второй шинопровод вводится и устанавливается в соединительный блок.

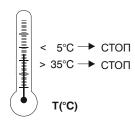

После проверки трех частей на правильность выравнивания и расстояния между двумя участками шинопровода 25 см затяните соединение с моментом 83 Нм с помощью динамометрического ключа.

Соберите формы для литья и установите резиновые герметизирующие ленты в профильные сходы.

Перед скреплением формы для литья нанесите воск для извлечения из формы на все внутренние поверхности формы и подождите, пока воск полностью высохнет. Очень важно обеспечить удаление форм для литья после отверждения.

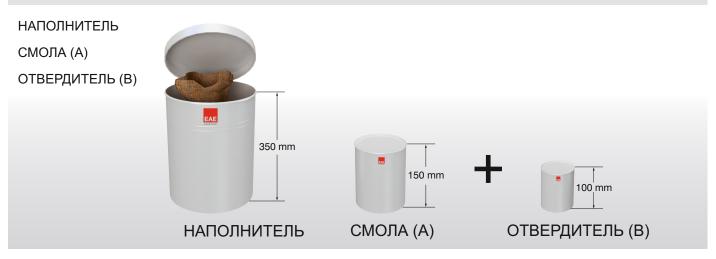
Пластины формы для литья должна быть закреплены на расстоянии около 7 см от конца шинопровода.

Прокладки должна располагаться только в нижней части пластин формы для литья. Благодаря этому, смолу можно будет заливать сверху.


За дополнительной информацией обращайтесь к инструкциям по монтажу.

▶ Подготовка материала для заливки соединений

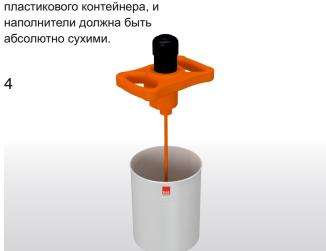
Соединение следует проверить мегомметром. Результат должен быть выше 1 мОм


Смола (А), отвердитель (В) и наполнители должна храниться не меньше одного дня при температуре выше (> 20 °C).

Температура окружающей среды на месте работы должна быть 5 °C < T amb <40 °C



Приготовление смеси смолы для заливки



Наполнитель, извлеченный из пластикового контейнера, и

Смола и отвердитель смешиваются в пластиковом контейнере.

3

Тщательно перемешайте смолу и отвердитель мешалкой в течение по крайней мере 1 минуты.

ОТВЕРДИТЕЛЬ (В)

Добавьте наполнители и перемешивайте до однородного состояния по крайней мере 5 минут. После этого заливку необходимо выполнить в течение 15 минут.

▶▶ Заливка при вертикальном и горизонтальном монтаже

Горизонтальное применение

Вертикальное применение

- Приготовленную смесь смолы для литья можно заливать, как только форма для литья будет установлена.
- При нормальных условиях окружающей среды отвердевание смеси смолы для литья занимает 7—8 часов.
- Если одного контейнера смолы недостаточно для соединения, второй необходимо приготовить и использовать немедленно.

Примечание: при вертикальном применении пластины формы для литья для надежности должна поддерживаться снизу.

▶ Сертификат соответствия ЕС

ДЕКЛАРАЦИЯ СООТВЕТСТВИЯ ЕС

Группа изделия Шинопроводы магистральные E-Line CR

Производитель EAE Elektrik Asansor End. Insaat San. ve Tic. A.S.

Akcaburgaz Mahallesi, 119. Sokak, No:10 34510 Esenyurt-Istanbul

Подтверждаем соответствие производимой на объектах ЕАЕ вышеупомянутой продукции или группы продукции нижеуказанным стандартам.

Стандарт:

EN 61439-6

Низковольтные комплектные устройства распределения и управления. Часть 6. Системы сборных шин (шинопроводы)

IEC 61439-6

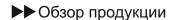
Низковольтные комплектные устройства распределения и управления. Часть 6. Системы сборных шин (шинопроводы)

Директива ЕС

2006/95/EC «Электрическое оборудование, предназначенное для использования в определенных пределах напряжения»

Дата

21.01.2014


EAE Elektrik A.Ş.

▶ Сертификаты

ОБЗОР ШИНОПРОВОДА 630...6300 A (E-LINE CR)

1- Стандарты и сертификаты:

- Система шинопроводов должна проектироваться и изготавливаться в соответствии со стандартом IEC 61439-6, в котором требуется проведение перечисленных ниже испытаний. Шинопроводы шины каждого номинала должна иметь отдельный типовой сертификат испытаний от независимой лаборатории с международной аккредитацией, включающий указанные ниже испытания:

2- Электрические характеристики

- Номинальное напряжение изоляции шинопроводной системы должено составлять 1000В
- Минимальные значения короткого замыкания шин указаны ниже.

Для алюминиевых 630А :1 сек/среднекв 20кА, пик 40кА :1 сек/среднекв 28кA, пик :1 сек/среднекв 40кA, пик A008 58.8_KA проводников 84ĸA 1000A :1 сек/среднекв 55кА, пик 121_KA 1250A :1 сек/среднекв 70кА, пик 1600-2000-2500A :1 сек/среднекв 100кА, пик 220кА 2250A-2500A 3000ААи выше :1 сек/среднекв 120кА, пик 264кА

Для медных проводников: 800A :1 сек/среднекв 23кА, пик 48,3кА 1000A :1 сек/среднекв 32кА, пик 67,2кА 1250A :1 сек/среднекв 45кА, пик 94,5кА 1600A :1 сек/среднекв 60кА, пик 132кА

2000-2500A :1 сек/среднекв 80кА, пик 176кА 3000A and above :1 сек/среднекв 120кА, пик 264кА

2.1- Корпус

- -В качестве материала корпуса для проводников должна использоваться специальная литая смола.
- -Все проводники должна быть покрыты оловом.
- -Блоки расширения должна использоваться в зонах расширения зданий и вертикальных линиях выше 40 м.

2.2- Проводники

Алюминиевые или медные проводники должна быть покрыты оловом в местах соединения в соответствии с конфигурацией проводки и присутствовать в установленном количестве, описанном ниже.

- -Шинопроводная система должна иметь алюминиевые проводники от 630 А до 5000 А.
- -Шинопроводная система должна иметь медные проводники от 800 А до 6300 А.
- -Шинопроводная система должна иметь следующее количество проводников и конфигурацию проводки:
- а)3 проводника
- b)4 проводника
- c)4 ¹/₂ проводника
- d)5 проводников
- Алюминиевые проводники должна быть из алюминия сорта ЕС. Минимальная проводимость должна составлять 34 м/мм²..W.
- Медные проводники должна содержать минимум 99,95% электролитической меди. Минимальная проводимость должна составлять 56 м/мм².W.

2.3- Изоляция

- -Шинопроводы должна быть изолированы при помощи специально отобранного кремния и мела, смешанных с эпоксидной смолой электрической категории, составляющей отличный композит. Этот материал постоянно работает в условиях колебаний температуры и передвижения.
- -Система изоляции должна подходить для непрерывной работы при напряжении 1000 В. Размер проводников должен проектироваться так, чтобы рост температуры в проводниках не превышал 100 градусов Цельсия при номинальной силе тока, что помогает решить проблему глобального потепления. По этой причине изоляция должна иметь класс "В".

2.4- Защита

- Степень защиты корпуса и соединений должна быть IP68

2.5- Принадлежности

- Шинопроводная система должна иметь все необходимые принадлежности (секции, отводы, соединители щитов и трансформаторов, редукторы и т. д.). Производитель должен поставлять элементы нестандартных размеров в короткие сроки, если этого требуют условия проекта.
- Для горизонтальных проходов должна использоваться горизонтальные блоки расширения каждые 40 м и в точках расширения здания.

3- Монтаж и ввод в эксплуатацию

- Шинопроводная система должна монтироваться по однолинейным чертежам с учетом необходимой номинальной силы тока и инструкций по монтажу производителя (значения моментов затяжки, устройства синхронизации и т. д.). Электромонтер должен выполнить испытания изоляции после монтажа в соответствии с процедурами испытаний производителя. Отчет о результатах испытаний должен быть направлен производителю. Минимальное значение изоляции должно составлять 1 МОм.

▶▶ Форма для разработки проекта

စ္က					
	Количество				
3	Ko				
перечень компонентов					
	H				
!	Компонент				
2	\$				
				 ⊴	Имя Дата Подпись:
	Элемент	Компания:	Проект	Проект № :	
	Эле	<u> </u>	은	2	пивотолдоП
					EAE

Скопируйте эту страницу для использования в собственных целях.

▶▶ Форма для разработки проекта

Sharten Kominearia Komine		Перечень компонентов	тов
Kommens : Thosen : Thosen He	пемент	Компонент	Количество
Проект : Проект			
Проект : Проект : Проект № : Проект № : Проект № : Продпись: Профинсь: Профи	(омпания :		
8 ———			
]роект № :		

Просьба скопировать эту страницу для вашего использования.

Шинопроводы магистральные 630...6300 A

E-LINE KB

Шинопроводы магистральные 800...6300 A

E-LINE KO-II

Шинопроводы распределительные 160...800 A

E-LINE MK

Шинопроводы распределительные 100-160-225 A

E-LINE DABLINE

Шинопроводы распределительные напольные (63-80A)

E-LINE KAP

Шинопроводы распределительные 40-63 A

E-LINE DL

Шинопроводы осветительные с дублированной системой 25–32–40 А

E-LINE KAM

Шинопроводы осветительные 25-32 A

E-LINE TB

Шинопроводы троллейные 35...250 A

E-LINE DK

Напольные кабельные лотки с выходными устройствами

E-LINE UK

Кабеленесущие системы и аксессуары

EAE Elektrik A.S., Турция.

Адрес: 34510, Акчабургаз Махаллеси, 119 Сокак,д.10-Есенюрт/ Стамбул/ Турция. Тел: +90 (212) 866 20 00 Факс: +90 (212) 886 24 20 www.eqe.com.tr

EAE Elektrik A.S.

Представительство в РФ Адрес: 107140 Русаковская ул.13 БЦ Бородино Плаза Москва/ Россия Тел: +7 495 510 66 01

OOO «EAE»

Завод в России Адрес: 601603, Владимирская область, Александровский район, д.Марино, ул. Каринское шоссе, д.2 Тел: +7 (919) 029 88 55

